36 research outputs found

    Coherent adiabatic theory of two-electron quantum dot molecules in external spin baths

    Full text link
    We derive an accurate molecular orbital based expression for the coherent time evolution of a two-electron wave function in a quantum dot molecule where the electrons interact with each other, with external time dependent electromagnetic fields and with a surrounding nuclear spin reservoir. The theory allows for direct numerical modeling of the decoherence in quantum dots due to hyperfine interactions. Calculations result in good agreement with recent singlet-triplet dephasing experiments by Laird et. al. [Phys. Rev. Lett. 97, 056801 (2006)], as well as analytical model calculations. Furthermore, it is shown that using a much faster electric switch than applied in these experiments will transfer the initial state to excited states where the hyperfine singlet-triplet mixing is negligible.Comment: 4 pages, 3 figure

    Fundamental Gates for a Strongly Correlated Two-Electron Quantum Ring

    Full text link
    We demonstrate that conditional as well as unconditional basic operations which are prerequisite for universal quantum gates can be performed with almost 100% fidelity within a strongly interacting two-electron quantum ring. Both sets of operations are based on a quantum control algorithm that optimizes a driving electromagnetic pulse for a given quantum gate. The demonstrated transitions occur on a time scale much shorter than typical decoherence times of the system.Comment: 4 pages, 4 figures, copyright 2010 The American Physical Societ

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure

    CO2PipeHaz: Quantitative hazard assessment for next generation CO2 pipelines

    Get PDF
    Without a clear understanding of the hazards associated with the failure of CO2 pipelines, carbon capture and storage (CCS) cannot be considered as a viable proposition for tackling the effects of global warming. Given that CO2 is an asphyxiant at high concentrations, the development of reliable validated pipeline outflow and dispersion models are central to addressing this challenge. This information is pivotal to quantifying all the hazard consequences associated with the failure of CO2 transportation pipelines, which forms the basis for emergency response planning and determining minimum safe distances to populated areas. This paper presents an overview of the main findings of the recently completed CO2PipeHaz project [1] which focussed on the hazard assessment of CO2 pipelines to be employed as an integral part of CCS. Funded by the European Commission FP7 Energy programme, the project's main objective was to address this fundamentally important issue

    The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

    Get PDF
    The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans

    Interatom intrashell blockade

    Get PDF
    We demonstrate a feature of the Rydberg blockade mechanism which occurs between two initially excited circular Rydberg atoms. When both atoms are exposed to weak time-dependent electric fields, it is shown that the intrashell dynamics of each atom is strongly modified by the presence of the other. Three characteristic dynamical regimes are identified with separating radii which both scale linearly with principal quantum number n for otherwise constant field parameters. A region of conditional entangled electron dynamics is separated from the outer asymptotic region of independent atom dynamics through a conditional radius, Rc. An inner region, where both atoms becomes locked in their initial state, is again separated from the conditional region by a smaller blocking radius, Rb

    Interatom intrashell blockade

    No full text

    Retention of Coastal Cod Eggs in a Fjord Caused by Interactions between Egg Buoyancy and Circulation Pattern

    Get PDF
    Norwegian coastal cod form a stationary population of Atlantic cod Gadus morhua consisting of several genetically separated subpopulations. A small-scale differentiation in marine populations with pelagic eggs and larvae is made possible by local retention of early life stages in coastal environments. A numerical model was used to simulate the circulation in a fjord system in northern Norway over 2 years with different river runoff patterns. The dispersal of cod eggs was calculated with a particle-tracking model that used three-dimensional currents. The observed thickness of the low-salinity surface layer was well reproduced by the model, but the surface salinity was generally lower in the model than in the observations. The cod eggs attained a subsurface vertical distribution, avoiding the surface and causing retention. Interannual variations in river runoff can cause small changes in the vertical distribution of cod eggs and larger changes in the vertical current structure. Retention in the fjord system was strong in both years, but some eggs were subjected to offshore transport over a limited time period. The timing of offshore transport depended on the precipitation and temperatures in adjacent drainage areas. A possible match between maximized spawning and offshore transport may have a negative effect on local recruitment
    corecore